


APPLE
AND MICROSOFT PUT A
BACK-DOOR ON EVERY
COMPUTER!!!!
Now
YOUR kernels can be hijacked or
crashed. MS and APPLE say it was an
'accident' but few insiders believe
them
Grab
those patches while Chipzilla updates its manuals

By Simon
Sharwood and Chris Williams 110  Reg comments  SHARE ▼

Linux, Windows, macOS, FreeBSD, and some
implementations of
Xen have a 'design flaw' (AKA: Backdoor) that could
allow attackers
to, at best, crash Intel and AMD-powered computers.

At worst, miscreants can, potentially, "gain access to sensitive
memory
information or control low-level operating system functions,”
which is a
fancy way of saying peek at kernel memory, or hijack the
critical code
running the machine.

The vulnerabilities can be exploited by malware running on a
computer,
or a malicious logged-in user. Patches are now available
to correct the
near-industry-wide programming blunders.

As detailed by CERT on
Tuesday, the security cockup, labeled CVE-
2018-8897,
appears to have been caused by developers at
Microsoft, Apple, and other
organizations 'misunderstanding' the way
Intel and AMD processors handle
one particular special exception.

https://www.theregister.co.uk/Author/Simon-Sharwood-and-Chris-Williams
https://forums.theregister.co.uk/forum/1/2018/05/09/intel_amd_kernel_privilege_escalation_flaws/
https://www.theregister.co.uk/2018/05/09/intel_amd_kernel_privilege_escalation_flaws/
https://www.kb.cert.org/vuls/id/631579
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-8897


Indeed, CERT noted: "The error appears to be due to developer
interpretation of existing documentation." In other words,
programmers
misunderstood Intel and AMD's manuals, which may
not have been very
clear.

You're
fired (the interrupt, that is)
Here's a deep dive put as gently as possible.
At the heart of the
issue is the POP SS instruction,
which takes from the running
program's stack a value used to select the
stack's segment, and puts
that number into the CPU's stack selector
register. This is all to do
with memory segmentation that modern
operating systems mostly
ignore, and you can, too. The POP
SS instruction is specially handled
by the
CPU so that the stack cannot be left in an inconsistent state if
an
interrupt fires while it is executing.

An application can set a debug breakpoint for the memory location
where
that stack selector will be pulled from the stack by POP
SS.
That is, when the app uses POP SS,
it will generate a special
exception when the processor touches a
particular part of RAM to
fetch the stack selector.

Now, here's the clever trick. To exploit this situation, the
instruction
immediately after the POP SS instruction
has to be an INT instruction,
which triggers an interrupt. These software-generated interrupts are
sometimes used by user programs to activate the kernel so it can do
work
for the running process, such as open a file.

On Intel and AMD machines, the software-generated interrupt
instruction
immediately after POP SS causes
the processor to enter



the kernel's interrupt handler. Then the debug
exception fires,
because POP SScaused the
exception to be deferred.

Operating system designers didn't expect this. They read Intel's x86-
64
manuals, and concluded the handler starts in an uninterruptable
state.
But now there's an unexpected debug exception to deal with
while very
early inside the interrupt handler.

This confuses the heck out of the kernel, causing it to, in certain
circumstances, rely on data controlled by un-privileged user
software,
as explained by the flaw's discoverers Nick Peterson of
Everdox Tech,
and Nemanja Mulasmajic of triplefault.io, in their
technical explanation (PDF):

When the instruction, POP
SS, is executed with debug
registers set for break on access
to that stack location and
the following instruction is an INT
N, a pending #DB will
be
fired after entering the
interrupt gate, as it would on most
successful branch instructions.
Other than a non-maskable
interrupt or perhaps a machine check
exception, operating
system developers are assuming an uninterruptible
state
granted from interrupt gate semantics. This can cause OS
supervisor software built with these implications in mind to
erroneously use state information chosen by unprivileged
software.

This is a serious security vulnerability and oversight made
by
operating system vendors due to unclear and perhaps
even incomplete
documentation on the caveats of the POP

https://everdox.net/popss.pdf


SS instruction and its
interaction with interrupt gate
semantics.

The upshot is that, on Intel boxes, the user application can use POP
SSand INT to
exploit the above misunderstanding, and control the
special pointer GSBASE in
the interrupt handler. On AMD, the app can
control GSBASE and
the stack pointer. This can either be used to crash
the kernel, by
making it touch un-mapped memory, extract parts of
protected kernel
memory, or tweak its internal structures to knock
over the system or
joyride its operations.

Any exploitation attempt is more likely to crash the kernel than cause
any serious harm, we reckon. However, like Meltdown,
as bugs go,
it's a little embarrassing for the industry, and it ought to
be patched to
be on the safe side.

Manipulations
The FreeBSD advisory on
the problem explains it further. “On x86
architecture systems, the stack
is represented by the combination of
a stack segment and a stack
pointer, which must remain in sync for
proper operation,” the OS’s
developers wrote. “Instructions related to
manipulating the stack
segment have special handling to facilitate
consistency with changes to
the stack pointer.

“The MOV SS and POP SS instructions inhibit debug exceptions
until the
instruction boundary following the next instruction. If that
instruction
is a system call or similar instruction that transfers control
to the
operating system, the debug exception will be handled in the
kernel
context instead of the user context.”

https://www.theregister.co.uk/2018/01/02/intel_cpu_design_flaw/
https://www.freebsd.org/security/advisories/FreeBSD-SA-18:06.debugreg.asc


The result? “An authenticated local attacker may be able to read
sensitive data in kernel memory, control low-level operating system
functions, or may panic the system.”

Exploiting such on Windows, according to Microsoft’s kernel
advisory, would mean “an attacker would first have to log on to
the
system. An attacker could then run a specially crafted application
to
take control of an affected system.”

Which – gulp! - isn’t a very far-fetched scenario, unless you run a
tight ship of no untrusted code.

Red Hat has patches ready
to roll, as does Ubuntu,
and Apple
for macOS.

The Linux kernel has also been fixed, way back on March 23, 2018.
A
patch is already present in versions 4.15.14, 4.14.31, 4.9.91,
4.4.125,
plus older 4.1, 3.16, and 3.2 branches.

Microsoft’s got it sorted, for Windows 7 through 10 and Windows
Server
2008 through version 1803. Xen has patches for versions 4.6
through 4.10. VMware’s hypervisors aren’t at risk, but vCenter
Server has a workaround and
vSphere Integrated containers await a
fix, but both are rated merely
“potentially affected.”

See the above CERT link for all affected vendors and their
responses,
and apply updates as necessary.

All sources are at pains to point out that while this issue derives
from
an x86-64 instruction, kernel programmers, and not Chipzilla, are
to
blame. It seems lots of coders have simply misunderstood how to

https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2018-8897
https://access.redhat.com/security/vulnerabilities/pop_ss
https://www.kb.cert.org/vuls/id/GWAN-AYL37G
https://www.kb.cert.org/vuls/id/CHEU-AYC3J7
https://xenbits.xen.org/xsa/advisory-260.html
https://kb.vmware.com/s/article/54988


handle debug exceptions, and made similar mistakes over a long
period of
time.

The Register expects plenty of OS developers
are about to be sent
to compulsory reeducation sessions on the x86-64
architecture, now
that Intel has updated its manuals to clarify the
handling of stack
selector instructions, and that readers get to do the
emergency patch
thing. Which you should be pretty good at by now. ®

InstLatX64
@InstLatX64

#Intel released the 67th edition of the Software Developer’s Manuals 
with interrupt related modifications software.intel.com/en-
us/articles…
2:16 PM
- May 8, 2018

38 20
people are talking about this

View image on Twitter

https://twitter.com/InstLatX64
https://twitter.com/InstLatX64/status/993962819543621632
https://twitter.com/hashtag/Intel?src=hash
https://t.co/qh7jNcQQFN
https://twitter.com/InstLatX64/status/993962819543621632
https://twitter.com/intent/like?tweet_id=993962819543621632
https://twitter.com/InstLatX64/status/993962819543621632
https://twitter.com/InstLatX64/status/993962819543621632/photo/1
https://twitter.com/InstLatX64/status/993962819543621632/photo/1
https://support.twitter.com/articles/20175256

