Direct Current Solutions for the Data Center

Presented by:

* Agenda *

- Challenges in Today's Data Center
- What is DC Power?
- Benefits of DC Power Distribution
- AC vs. DC Distribution Systems
- DC System Arrangements
- DC Design Considerations

Presenter Information

Jack McCarthy, PE
 Senior Electrical Engineer
 Integrated Design Group, Inc.

Rudy KrausChief Executive OfficerValidus DC Systems, LLC

Data Center Problems/Power Trends

- Increasing operating and installation costs
- Reduced reliability/low availability
- Existing power distribution systems have a low end-to-end efficiency
 - Heat is the ENEMY!
 - Legacy systems can't support high density load requirements
 - Current power demands vary from 7 to 15 kW per rack or 200+ watts per square foot
 - 2010 initiatives in supercomputing,1 petaflop and beyond extrapolates to 40 kW - 60 kW per rack or 1100 watts per square foot
- Data center energy use has the attention of Washington, DC
 EPA recently issued their report to Congress on the topic of data center energy consumption EPA Energy Star Program

DC Fundamentals

- Direct current is a synonym for constant or "constant polarity"
- It is transmitted through the use of a (+) wire a (-) wire
- It can be grounded
- It can be produced with the use of a rectifier, AC/DC
- It is a very common way to power electronic devices, and is the basic building block for energy storage, renewable energy devices
- "Oring" of feeds can be simply achieved through the use of diodes
- It typically can be distributed with less copper than AC when utilized at the proper voltages
- It is used in many industries today, rail, manufacturing, mining, aerospace, telecommunications

Why DC Makes Sense for the Data Center

- Most of the loads are DC in nature or can be fed with DC directly
 - Servers, storage devices, motor drives and lighting
 - Simplified distribution system results in greater reliability
- Providing DC devices with DC power reduces system losses
 - Reduces the quantity of power conversions and transformations before the load
 - No SMPS, reduces conversion and operational losses (HEAT)
- A -575 to -54 VDC systems combines the best of the AC & DC worlds
 - Run higher voltage (> 5KV) AC power closer to loads
 - Convert AC power to -575 VDC
 - Convert -575 VDC to -54 VDC at server row level
 - Distribute -54 VDC power in a manner similar to a Telco facility
- Aggregation and optimization of central power supplies provides:
 - Higher efficiency, reliability and maintainability
 - Reduced electrical infrastructure
 - Scalable and modular power & cooling solutions

The Benefits of DC Distribution

- Less copper required due to lower distribution losses
- Simplified system results in improved reliability, maintainability
- Ability to tie in (or-gate) many types of DC storage without complex electronics
 - Batteries, Fuel Cells, PVs, Flywheel, Wind Turbines
- Allows the use of highly efficient, -575 to -54 V DC-DC converters close to the load
- Allows the use of optimized high efficiency, DC power supplies in servers and other equipment
- Allows the use of more efficient DC motors and lighting

AC and DC Power Paths

Typical AC Power Path (5 Electrical Conversions) 43 to 72% Overall Efficiency

Optimized DC Power Path (2 Conversions)

83 to 88% Overall Efficiency

Lower efficiency affects not only the power required for the IT equipment, it also affects the amount of cooling required to account for heat gain within the facility

N, N+I -575 VDC System Arrangement

N, N+I Configuration

2N, 2N+1 -575 VDC System Arrangement

2N, 2N+1 Configuration

DC Design Considerations

- 600 and 60 VDC components are available
- Supports simple integration of alternative energy sources
- DC requires less copper than AC
- Reduced square footage requirements
- Easily provides N+1, 2N or 2(N+1) redundant designs
- Reduced cooling requirements
- Frequency, phase angle and harmonics are not issues
- Higher availability than AC systems
- Scalable, modular, efficient and universal
- Supports LEED certified designs

Q & A

PCM 030: 30kW DC-DC Power Module

- -575 VDC Input -54 VDC Output
- Compact design
- Will operate independently from other power supplies and all external controls
- Highly efficient under dynamic and low loading
- Hot swappable under full loading in redundant configuration

The Power Converter Unit (PCU 120)

- 30-120 kW in a 19" Rack
- 30kW modules
- N+1 redundant capable
- -575 VDC Input -54 VDC output
- Hot swappable modules
- Dual feed capable
- Customizable controls and monitoring
- TUV approved to UL/IEC and FCC standards

