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Overview
Timeline

• 9/1/2003 – 8/31/2006
• 40% complete

Budget
• Total $10.1 M

– DOE $8.08 M
– Contractor $2.02 M

• FY04 – $1,650,000 
from DOE (47% of 
FY04 PMP)

• FY05 – Projected 
$2,350,000 from DOE 
(88% of FY05 PMP)

Barriers & Targets
• A. Durability: 40k hrs
• B. Cost: $400 - 750/kW

Partners
• Plug Power
• Case Western Reserve 

University
Subcontract

• University of Miami
Consultant

• Iowa State University
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Objectives
Develop a pathway/technology for stationary PEM fuel cell systems for enabling 

DOE to meet its year 2010 objective of 40,000 hour system lifetime

Goal: Develop an MEA with enhanced durability
– Manufacturable in a high volume process
– Capable of meeting market required targets for lifetime and cost
– Optimized for field ready systems
– 2000 hour system demonstration

Focus to Date
• MEA characterization and diagnostics
• MEA component development
• Degradation mechanisms
• Defining system operating window
• MEA and component accelerated tests
• MEA lifetime analysis
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Approach
To develop an MEA with enhanced durability ….

• Utilize proprietary 3M Ionomer
• Improved stability over baseline ionomer

• Utilize ex-situ accelerated testing to age MEA components
• Relate changes in component physical properties to changes in MEA 

performance
• Focus component development strategy

• Optimize stack and/or MEA structure based upon modeling and 
experimentation

• Utilize lifetime statistical methodology to predict MEA lifetime under ‘normal’
conditions from accelerated MEA test data 

Optimize MEAs and 
Components for Durability

Optimize System Operating 
Conditions to Minimize

Performance Decay
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Accomplishments
• Component Characterization

• GDL permeability
• Membrane properties vs decay
• Segmented cell

• Model Compound Study – Membrane Decay Mechanism
• Component Development

• Membrane (improved oxidative stability)
• End group modified
• Additive studies

• GDL (improved oxidative stability)
• Stability factor

• Electrode design – Start-up, performance and fluoride release
• System Study – CO and Air Bleed
• MEA Accelerated Testing

• Effect of load settings
• Relationship between fluoride release and MEA lifetime
• Statistical analysis of accelerated test data
• New MEAs with significant durability improvement
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GDL Permeability Measurements

• Measure GDL permeability under 
both humid and dry air

• Humid permeability lower than dry
• Pores fill with water

• Humid conditions represent fuel cell 
conditions
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Relationship Between Membrane Chemical 
Degradation and Mechanical Failure
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Peroxide Test
• 1M H2O2
• 90ºC

Strength Test
• Double notch tear test
• 50ºC
• 95% RH

A method of aging membrane 
in a way that degrades 
mechanical properties is 
under development

Tear strength constant up to 
25% membrane weight loss

John Nairn, Polymer Engineering 
and Science, 38 (1998) 186-193.
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Segmented Cell

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 200 400 600 800 1000 1200 1400 1600 1800
Time (Secs)

C
ur

re
nt

 D
en

si
ty

 @
 0

.5
V 

(A
/c

m
2 ) Inlet (11)

10
9
8
7
6
5
4
3
2
Outlet (1)

• Printed circuit board technology
• Divides 50cm2 active area into 121 

segments which follow flow field
• Quad serpentine flow field
• Inlet current 30% higher than outlet
• 121 channel load under 

development

Inlet

Outlet A  B  C  D  E  F  G  H  I  J  K

1
2
3
4
5
6
7
8
9
10
11



MEA & Stack Durability for PEM Fuel Cells – 3 
DOE Hydrogen Program Review May 23 - 26, 2005 Fuel Cell

9 Components

Model Compound (MC) Study – Membrane Decay Mechanism
MC1

MC2

MC3 MC4

MC5 MC6

MC7

MC8

C
F
C O

F2
C

F2
C CF3

O

CF3

HO

HO C
F
C O

F2
C

F2
C

F2
C

F2
C SO3H

CF3

O

F3C
F2
C CF35

F3C
F2
C

F2
C

F2
C SO3H F3C

F2
C

F2
C H6

F3C
F2
C O

F2
C

F2
C

F2
C SO3H

F3C
F2
C O

F2
C

F
C O

F2
C

F2
C

CF3

SO3H

6HO C
F2
C CF3

O

• –SO3H stable
• –COOH unstable

• Ether linkages & tertiary C–F 
positions alpha to –COOH accelerate 
decay

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160 180
Time (hrs)

F-  R
el

ea
se

d/
To

ta
l F

-  in
 M

C
  (

%
) 

MC1
MC2
MC4
MC5
MC6
MC7
MC8

 

Solution
• 100mM MC
• 400mM Fe2+

• 400mM H2O2
• 70ºC



MEA & Stack Durability for PEM Fuel Cells – 3 
DOE Hydrogen Program Review May 23 - 26, 2005 Fuel Cell

10 Components

Stability of End Group Modified 3M Ionomer
Accelerated Test 
Conditions:
90ºC cell
70ºC gas dew points
H2/Air
Anode over pressure
Load Profile:
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End Group Modification
• Eliminates –COOH groups

Statistically significant 
difference

• ANOVA => p=0.000 @ 90% 
confidence interval

Accelerated lifetime test
• 89% improvement
• 396hrs vs 210hrs
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3M Membrane Stability – Ex-situ Tests
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Additives significantly mitigate membrane degradation via hydrogen peroxide

Additive 1 – DOE Contract No. DE-FC04-02AL67621

Procedure:
• 1M H2O2
• 90°C
• 5 days 
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GDL Stability Improvements
Applied Voltage = 1.4V vs. SHE
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Electrode Design – Start-up, Performance and Fluoride Release
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System Studies – CO/Air Bleed and Their Effect on F- Release
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Accelerated Testing: Effect of Load on Lifetime
Load Profiles
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Load profile significantly affects lifetime
• OCV setting results in a > 8X reduction in 

MEA lifetime under accelerated 
conditions

• Systems should be designed to reduce 
total time spent at OCV
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Relationship Between F- Release & MEA Lifetime

A portion of the data from DOE Contract No. DE-FC04-02AL67621
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Various membranes
Load profile:

• Strong relationship between 
fluoride release rate and MEA 
lifetime

• Relationship independent of 
membrane type
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MEA Design B – DOE Contract No. DE-FC04-02AL67621

Significant improvement in MEA lifetime
• Design C 775% Improvement

• 700hrs vs 80hrs
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Response to 2004 Reviewers’ Comments
• Incorporate automotive conditions; define durability requirements for 

automotive operation.
– Accelerated stationary MEA tests are close to actual automotive operating 

conditions
– Accelerated component tests valid for both stationary and automotive

• No collaboration outside of team members. Program only valuable to 3M 
and Plug Power.

– “Critical mass” of collaboration established with CASE, Plug Power, and 3M as 
required in the solicitation

• Subcontract with University of Miami
• Working with consultant from Iowa State University 

– R&D addresses fundamental issues
– Knowledge gained and successful demonstration of progress will benefit entire 

fuel cell industry
• Need MEAs and systems less sensitive to operating conditions.

– Only reported results with baseline materials and system in 2004
– New designs are still under development

• First system test w/new MEAs underway in 2005
• Catalyst support degradation critical barrier. How will it be solved?

– Not a critical barrier; commercially available catalysts address this issue
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Future Work
• Remainder of 2005

– Ongoing MEA component development
– Pilot scale-up of new components

– MEA component integration
– Ongoing accelerated MEA lifetime testing

– Initiate MEA accelerated testing with new components
– Ongoing 3D model and segmented cell work
– Ongoing studies on interactions between system 

parameters and MEA durability
– Start system testing using newly developed MEAs

• 2006
– Complete activities started in 2005
– Select MEA components for final system tests
– Final system demonstration
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Publications and Presentations
• C. Zhou, T. Zawodzinski, Jr., D. Schiraldi, “Chemical changes in Nafion® membranes under 

simulated fuel cell conditions,” 228th ACS Meeting, Philadelphia, PA, August 2004.
• M.T. Hicks, “Accelerated testing – Application to fuel cells”, 2004 Fuel Cell Testing Workshop, 

Vancouver BC, Canada, September 2004.
• A. Agarwal, U. Landau and T. Zawodzinski, Jr., “Hydrogen peroxide formation during oxygen 

reduction on high surface area Pt/C catalysts,” 206th ECS Meeting, Honolulu, HI, October 
2004. (Presentation and Paper)

• C. Zhou, T. Zawodzinski, Jr., D. Schiraldi, “Chemical changes in Nafion® membranes under 
simulated fuel cell conditions,” 206th ECS Meeting, Honolulu, HI, October 2004.  

• M. Pelsozy, J. Wainright and T. Zawodzinski Jr., “Peroxide production and detection in polymer 
films,” 206th ECS Meeting, Honolulu, HI, October 2004. (Presentation and Paper) 

• J. Frisk, W. Boand, M. Hicks, M. Kurkowski, A. Schmoeckel, and R. Atanasoski, “How 3M 
developed a new GDL construction for improved oxidative stability,” 2004 Fuel Cell Seminar, 
San Antonio, TX, November 2004. 

• D. Schiraldi, “Chemical durability studies of model compounds and Nafion® under mimic fuel 
cell conditions,” Advances in Materials for Proton Exchange Membrane Fuel Cells, Pacific 
Grove, CA, February 2005.

• S. Hamrock, ”New membranes for PEM fuel cells“, Advances in Materials for Proton Exchange 
Membrane Fuel Cells, Pacific Grove, CA, February 2005 

• C. Zhou, T. Zawodzinski, Jr., D. Schiraldi, “Chemical durability studies of model compounds 
and Nafion® under mimic fuel cell conditions,” 229th ACS Meeting, San Diego, CA, March 
2005.

“Nafion” is a registered trademark of DuPont
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Hydrogen Safety
The most significant hydrogen hazard associated 

with this project is: 
Accidental H2 release in cylinder closet leading 
to ignition from:

• H2 line or manifold breach
• Accident during replacement of tank cylinders
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Hydrogen Safety
Our approach to deal with this hazard is:

Design
• Hydrogen cylinder closet and gas distribution system adhere to codes.
• Reduction in number of cylinders in the tank closet
• 2-step regulators (less susceptible to failure and designed to fail 

closed)
• H2 sensors in all labs and tank closet, alarm system
• Automatic shut-off of H2 gas supply if sensors detect H2 release

Procedures 
• SOP’s for tank changing, alarm responses, test station operation
• Tank changing restricted to highly trained personnel 
• Regular maintenance checks – sensors, leak check of valves etc.

Installing H2 Generator (in non-inhabited mechanical 
room) to significantly reduce total volume of H2 in facility


