

3M Company May 24, 2005

This presentation does not contain any proprietary or confidential information

Powered

3 M

b v

Overview

Timeline

- 9/1/2003 8/31/2006
- 40% complete

Budget

- Total \$10.1 M
 - DOE \$8.08 M
 - Contractor \$2.02 M
- FY04 \$1,650,000 from DOE (47% of FY04 PMP)
- FY05 Projected \$2,350,000 from DOE (88% of FY05 PMP)

Barriers & Targets

- A. Durability: 40k hrs
- B. Cost: \$400 750/kW

Partners

- Plug Power
- Case Western Reserve
 University

Subcontract

- University of Miami
 Consultant
- Iowa State University

Objectives

Develop a pathway/technology for stationary PEM fuel cell systems for enabling DOE to meet its year 2010 objective of 40,000 hour system lifetime

Goal: Develop an MEA with enhanced durability

- Manufacturable in a high volume process
- Capable of meeting market required targets for lifetime and cost
- Optimized for field ready systems
- 2000 hour system demonstration

Focus to Date

- MEA characterization and diagnostics
- MEA component development
- Degradation mechanisms
- Defining system operating window
- MEA and component accelerated tests
- MEA lifetime analysis

Approach

To develop an MEA with enhanced durability

Optimize MEAs and Components for Durability

Optimize System Operating Conditions to Minimize Performance Decay

- Utilize proprietary 3M Ionomer
 - Improved stability over baseline ionomer
- Utilize ex-situ accelerated testing to age MEA components
 - Relate changes in component physical properties to changes in MEA performance
 - Focus component development strategy
- Optimize stack and/or MEA structure based upon modeling and experimentation
- Utilize lifetime statistical methodology to predict MEA lifetime under 'normal' conditions from accelerated MEA test data

Accomplishments

- Component Characterization
 - GDL permeability
 - Membrane properties vs decay
 - Segmented cell
- Model Compound Study Membrane Decay Mechanism
- Component Development
 - Membrane (improved oxidative stability)
 - End group modified
 - Additive studies
 - GDL (improved oxidative stability)
 - Stability factor
 - Electrode design Start-up, performance and fluoride release
- System Study CO and Air Bleed
- MEA Accelerated Testing
 - Effect of load settings
 - Relationship between fluoride release and MEA lifetime
 - Statistical analysis of accelerated test data
 - New MEAs with significant durability improvement

7

Fuel Cell Components

3M Fuel Cell Components

3M Fuel Cell Components

<u> 3M Membrane Stability – Ex-situ Tests</u>

MEA & Stack Durability for PEM Fuel Cells – DOE Hydrogen Program Review May 23 - 26, 2005 Additive 1 – DOE Contract No. DE-FC04-02AL67621

3™ Fuel Cell Components

System Studies – CO/Air Bleed and Their Effect on F⁻ Release

Accelerated Testing: Effect of Load on Lifetime

Relationship Between F⁻ Release & MEA Lifetime

MEA & Stack Durability for PEM Fuel Cells – DOE Hydrogen Program Review May 23 - 26, 2005

A portion of the data from DOE Contract No. DE-FC04-02AL67621

DOE Hydrogen Program Review May 23 - 26, 2005

MEA Design B - DOE Contract No. DE-FC04-02AL67621

Fuel Cell Components

Response to 2004 Reviewers' Comments

- Incorporate automotive conditions; define durability requirements for automotive operation.
 - Accelerated stationary MEA tests are close to actual automotive operating conditions
 - Accelerated component tests valid for both stationary and automotive
- No collaboration outside of team members. Program only valuable to 3M and Plug Power.
 - "Critical mass" of collaboration established with CASE, Plug Power, and 3M as required in the solicitation
 - Subcontract with University of Miami
 - Working with consultant from Iowa State University
 - R&D addresses fundamental issues
 - Knowledge gained and successful demonstration of progress will benefit entire fuel cell industry
- Need MEAs and systems less sensitive to operating conditions.
 - Only reported results with baseline materials and system in 2004
 - -New designs are still under development
 - First system test w/new MEAs underway in 2005
- Catalyst support degradation critical barrier. How will it be solved?

 Not a critical barrier; commercially available catalysts address this issue

Future Work

- Remainder of 2005
 - Ongoing MEA component development
 - Pilot scale-up of new components
 - MEA component integration
 - Ongoing accelerated MEA lifetime testing
 - Initiate MEA accelerated testing with new components
 - Ongoing 3D model and segmented cell work
 - Ongoing studies on interactions between system parameters and MEA durability
 - Start system testing using newly developed MEAs
- 2006
 - Complete activities started in 2005
 - Select MEA components for final system tests
 - Final system demonstration

Publications and Presentations

- C. Zhou, T. Zawodzinski, Jr., D. Schiraldi, "Chemical changes in Nafion[®] membranes under simulated fuel cell conditions," 228th ACS Meeting, Philadelphia, PA, August 2004.
- M.T. Hicks, "Accelerated testing Application to fuel cells", 2004 Fuel Cell Testing Workshop, Vancouver BC, Canada, September 2004.
- A. Agarwal, U. Landau and T. Zawodzinski, Jr., "Hydrogen peroxide formation during oxygen reduction on high surface area Pt/C catalysts," 206th ECS Meeting, Honolulu, HI, October 2004. (Presentation and Paper)
- C. Zhou, T. Zawodzinski, Jr., D. Schiraldi, "Chemical changes in Nafion[®] membranes under simulated fuel cell conditions," 206th ECS Meeting, Honolulu, HI, October 2004.
- M. Pelsozy, J. Wainright and T. Zawodzinski Jr., "Peroxide production and detection in polymer films," 206th ECS Meeting, Honolulu, HI, October 2004. (Presentation and Paper)
- J. Frisk, W. Boand, M. Hicks, M. Kurkowski, A. Schmoeckel, and R. Atanasoski, "How 3M developed a new GDL construction for improved oxidative stability," 2004 Fuel Cell Seminar, San Antonio, TX, November 2004.
- D. Schiraldi, "Chemical durability studies of model compounds and Nafion[®] under mimic fuel cell conditions," Advances in Materials for Proton Exchange Membrane Fuel Cells, Pacific Grove, CA, February 2005.
- S. Hamrock, "New membranes for PEM fuel cells", Advances in Materials for Proton Exchange Membrane Fuel Cells, Pacific Grove, CA, February 2005
- C. Zhou, T. Zawodzinski, Jr., D. Schiraldi, "Chemical durability studies of model compounds and Nafion[®] under mimic fuel cell conditions," 229th ACS Meeting, San Diego, CA, March 2005.

Hydrogen Safety

The most significant hydrogen hazard associated with this project is:

- Accidental H₂ release in cylinder closet leading to ignition from:
 - H₂ line or manifold breach
 - Accident during replacement of tank cylinders

Hydrogen Safety

Our approach to deal with this hazard is:

≻Design

- Hydrogen cylinder closet and gas distribution system adhere to codes.
- Reduction in number of cylinders in the tank closet
- 2-step regulators (less susceptible to failure and designed to fail closed)
- H₂ sensors in all labs and tank closet, alarm system
- Automatic shut-off of H_2 gas supply if sensors detect H_2 release

➢Procedures

- SOP's for tank changing, alarm responses, test station operation
- Tank changing restricted to highly trained personnel
- Regular maintenance checks sensors, leak check of valves etc.

Installing H₂ Generator (in non-inhabited mechanical room) to significantly reduce total volume of H₂ in facility

