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Summary 

 

A hydrogen storage system composed of borohydride complex ions stabilized in an aqueous 
KOH or NaOH solution has been developed by applying catalytic hydrolysis to generate hydrogen 
under ambient pressure and temperature conditions.  
 
In this work, ball milling and fluorination effects on the catalytic hydrolysis of the alkaline stabilized 
BH4

- solution have been investigated for Mg, Mg2Ni, Mg-23.5 mass % Ni eutectic alloy and their 
hydrides.  Fluorination (F-treatment) after ball milling was found effective for enhancing hydrolysis 
kinetics for Mg2Ni and its hydride, but not effective for Mg and MgH2.   
 
By the formation of MgF2 at the extreme surface of Mg2Ni during F-treatment, Mg2Ni is 
disproportionated to Mg2-xNiH4 in balance with xMgF2.  We believe the Mg2-xNiH4 contributes to 
the catalytic hydrolysis to generate hydrogen at significantly higher rates than other Mg-based 
catalysts.  Experimental work has been extended to evaluate the catalytic function of the Mg-
Mg2Ni eutectic alloy after ball milling and F-treatment in order to understand the roles of NiH4

- in 
the Mg2-xNiH4.  F-treated Mg-23.5 mass % Ni eutectic alloy after ball milling has exhibited a fairly 
high catalytic function, in between those of F-MgH2 and F-Mg2NiH4.  It was clearly shown in this 
work that MgH2 works to hinder the catalytic functions of Mg-23.5Ni eutectic alloy in the 
hydrolysis of BH4

- complex.   
 
Roles of the NiH4

- complex ion in Mg2-xNiH4 in hydrolysis have been investigated to date and 
should be subjected to further detailed studies. 

 
Introduction 
 
In our previous work on F-treatment [1], Mg and Mg2Ni have been found to form MgF2 that 
exhibits a close affinity with both molecular hydrogen in gas-solid reactions and protons in 
electrochemical reactions.  F-treatment contributes significantly to reducing pressure and 
temperature levels during hydrogenation as the results of the removal of oxide layer and the 
formation of hydride at the extreme surface.  In the eutectic alloy of Mg-Mg2Ni, MgF2 is formed 
along the grain boundaries between the Mg and Mg2Ni phases.  MgF2 formed at the boundaries 
works to induce hydrogen dissociation at the surface of both Mg and Mg2Ni phases to form 
hydride layers at the vicinity of the boundaries.  Those works are reported elsewhere [2-6].  [Note: 
hereafter, �F-� will be used for F-treated and �U-� for untreated.] 
 
From the earlier results, a combined procedure of ball milling with fluorination was expected to 
provide excellent hydriding/dehydriding properties and characteristics to the Mg-Mg2Ni eutectic 
alloy.  However, during this IEA project, it was found that both the ball milling and fluorination 
procedures are insufficient to improve the dehydriding kinetics of this material.  We have 
concluded that the close bonding between Ni and H in the form of NiH4

-, as reported in a series of 
earlier works [7-12], must not be affected by those treatments to result in significant 
improvements in hydriding kinetics. 
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Meanwhile, Mg2Ni and its fluorinated hydride were found to work as excellent catalysts in the 
hydrolysis of the alkaline stabilized BH4

- complex ion as a hydrogen storage material [13-17].  By 
stoichiometric calculation of the hydrolysis reaction BH4

- + 2H2O -> 4H2 + BO2
- (in an aqueous 

alkaline solution such as KOH and NaOH), hydrogen generated by the hydrolysis amounts to 
17.1 mass % in [4H2/(BH4

- + 2H2O)].  However, the actual H-capacity is largely dependent on the 
concentration and the solubility of BH4

- in alkaline solution.  In Table 1, H-capacity is listed as a 
function of BH4

- concentration in aqueous KOH or the NaOH solution, where BH4
- is supposed to 

be dissolved from NaBH4. 
 

Table 1 - Experimental H-contents of BH4
- in NaOH solution 

 
NaBH4 : H2O NaBH4/(NaBH4+xH2O) H-contents (mass %) 

1 : 2 51.4 10.8 
1 : 3 41.3 8.70 
1 : 4 34.5 7.30 
1 : 5 29.7 6.25 
1 : 6 26.0 5.48 
1 : 7 23.2 4.88 
1 : 8 20.9 4.40 

 
Such materials as NaBH4 have been studied as hydrogen storage materials (18-27).  Recently a 
series of research efforts on NaAlH4 has been undertaken with regard to the gas-solid phase 
application for high capacity hydrogen storage (28-34).   
 
This work is intended to develop an hydrogen storage system by applying the gas-liquid phase for 
catalytic hydrolysis.  In this work, F-Mg F-Mg2Ni, and F-Mg-23.5 mass%Ni eutectic alloy after ball 
milling were experimentally evaluated as catalysts for generating hydrogen by hydrolysis from the 
NaOH stabilized BH4

- complex ion solution.  This work has been performed to develop a new 
hydrogen storage system based on BH4

--complex that has been known to compose high H-
capacity hydrides such as KBH4 and NaBH4.   
 
Experimental results and discussions 
 
All samples were prepared by a conventional ball milling procedure under ambient temperature 
for 90 min in order to reduce the average particle size below 25 µm before F-treatment.   
 
F-treatment by F-1 method (1,35) was introduced for Mg simply to remove the surface oxide and 
produce the MgF2 layer that was expected to enhance hydride formation at the extreme surface.  
Mg2Ni, Mg2NiH4 and Mg-23.5Ni eutectic alloys were fluorinated for preparing the 
disproportionated Mg2-xNiH4 and xMgF2.  An F-Mg-23.5%Ni sample was prepared by the F-10 
method in which 3g of Mg-23.5Ni was ball milled with 10 ml of F-1 solution at 2,700 rpm for 90 
min and 0.5g of treated sample was applied with 20ml of testing solution.  X-ray diffraction 
patterns of the fluorinated and partially hydrided Mg-23.5Ni particles are shown in Figure 1.   
 
Catalytic functions of Mg, Mg2Ni and Mg-23.5Ni and their F-treated samples, which were partially 
hydrided at the extreme surface, were evaluated by measuring hydrogen gas generated during 
catalytic hydrolysis of a BH4

--containing NaOH solution (20 ml of 10g NaBH4 per liter of 10 wt% 
NaOH solution).  All catalysts were applied after arranging to have the same specific surface 
area.  Hydrogen gas collected in a conventional glass P-V apparatus and was measured at room 
temperature.  Individual experimental data are plotted as a function of elapsed time. 
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Figure 1 - XRD patterns of the ball milled/fluorinated Mg-23.5 mass% Ni eutectic 
alloy before and after hydrogenation at 75˚C and 1.0 MPa (5 H/D cycles) 

 
Experimental data for U-Mg, U-MgH2 and U-Mg2Ni are shown in Figure 2 and for U-Mg2Ni and F-
Mg2Ni in Figure 3.  U-Mg2NiH4 and F-Mg2NiH4 are shown in Figure 4, and the temperature 
dependency of F�Mg2NiH4 on the rates of hydrolysis is illustrated in Figure 5.  Hydrolysis by F-
Mg-23.5Ni eutectic alloy after ball milling is shown in Figure 6. 
 
The effect of ball milling on U-Mg2Ni was investigated for comparison with F-Mg2NiH4.  The 
results are shown in Figure 7 and Figure 8.  For lower temperatures (10-20oC, Figure 7) ball 
milling gives better catalytic performance than F-Mg2NiH4, but ball milling is similar to F-Mg2NiH4 
at higher temperature ranges (30-50oC, Figure 8).  The reduced amounts of hydrogen generated 
were considered to be a result of oxide formation during ball milling. 
 
All F-treated samples were composed of MgF2 and/or Mg2-xNiH4 at the extreme surface.  From 
the materials balance viewpoint, it is considered possible that MgF2 formed during F-treatment 
might result in the disproportionation of F-Mg2Ni and F-Mg2NiH4 to Mg2-xNiH4 (x is dependent on 
the amount of xMgF2 formed) at the extreme surface.  F-Mg-23.5Ni might also result in the 
formation of MgH2, xMgF2, and Mg2-xNiH4.   
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Figure 6 - Rates of H-generation by F-Mg-23.5
mass% Ni after ball milling (24˚C) 
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Figure 7 - Catalytic effects of F-treated Mg2NiH4
and ball-milled Mg2Ni  on H-generation 
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Figure 3 - Rates of H-generation by F-treated
and untreated Mg2Ni 
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Figure 4 - Rates of H-generation by Mg2NiH4 
before and after F-treatment 
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Figure 8 – Catalytic effects of F-treatment on 

Mg2NiH4 and ball milling on Mg2Ni 
 
MgH2 was found to not be effective as a catalyst, as clearly shown in experimental results 
(Figure 2). Mg2-xNiH4 was considered to exhibit catalytic function, where the excess NiH4

- in 
Mg2-xNiH4 contributed to the hydrolysis.  On the other hand, MgH2 formed in F-Mg-23.5%Ni after 
ball milling was considered to be the reason for a catalytic effect lower than that of F-Mg2Ni.  We 
considered that the effect is caused by MgH2-coverage along with the grain boundary between 
Mg and Mg2Ni phases exposed by ball milling.   This is reasonably seen from Figure 3 for F-
Mg2Ni and Figure 6 for F-Mg-23.5Ni.  Hydriding/dehydriding cycles before F-treatment was found 
to not be effective for enhancing catalytic function of Mg2NiH4.  Comparisons of the rates of 
hydrogen generation suggested the following relative ratings :  

 
U-Mg<F-MgH2<U-Mg2Ni <F-Mg-23.5Ni<F-Mg2NiH4<F-Mg2Ni. 

 
 
Conclusions 
 
For the catalytic hydrolysis of the BH4

- complex ion stabilized in aqueous NaOH solutions, Mg 
and Mg-Ni alloys have been developed as catalysts by applying ball milling and fluorination 
techniques.  Mg and MgH2 did not work as catalysts even after ball milling and F-treatment.  
Hydriding/dehydriding cycles before F-treatment were found to have little influence on the rates of 
hydrolysis.  Ball milling without F-treatment on Mg-23.5 %Ni did not exhibit significant 
improvement on the rates of hydrolysis.   
 
The best catalyst obtained in this work was F-Mg2Ni, which resulted in the generation of hydrogen 
at high rates during the hydrolysis of 10wt% NaOH stabilized BH4

- complex solution.  The authors 
attributed the effect to the excess NiH4

- complex ions in Mg2-xNiH4 that appeared at the extreme 
surface by the disproportionation of Mg2Ni during F-treatment.   
 
However, the disproportionation of Mg2Ni during F-treatment has not been studied in enough 
detail to define the roles of Mg2-xNiH4 at the extreme surface.  The authors will continue to 
investigate the roles of disproportionation during F-treatment by performing a series of 
instrumental analyses such as XPS, AUGER, SIMS, and XRD. 
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