Reversible Hydrogen Storage Materials – Structure, Chemistry and Electronic Structure

Ian Robertson and Duane Johnson University of Illinois

A Participant in the DOE Metal Hydride Center of Excellence

DOE 2005 Hydrogen Program Annual Review, Washington, D.C., May 23, 2005

Project ID # STP 23

This presentation does not contain any proprietary or confidential information

Overview

Timeline

Project start date: FY 05

Project end date: FY 09

Percent Complete: New Project

Budget

- Total project funding
 - **-** \$1,253, 389
 - \$313,350
- Funding for FY05: \$150,000

Barriers addressed

- Optimization of absorption/desorption kinetics of solid-state storage systems
- Theoretical modeling to guide material development
- Improve understanding of fundamental processes impacting alloy development that surpass targets.

Targets

Gravimetric capacity: >6%

Volumetric capacity: > 0.045 kg H2/L

Min/Max delivery temp: -30/85°C

Current Partnerships

Participant in DOE Metal-Hydride Center of Excellence, providing characterization and modeling of fundamental structural and chemical processes occurring during absorption/desorption cycle.

Specific collaborations.

Sandia National Laboratories – understand the fundamental processes controlling hydrogen absortion/desorption from NaAIH_{4.}

Hughes Research Laboratory – understand structural and chemical changes associated with hydrogen absorption/desorption from Mg/Libased hydride systems.

Univ. of Pittsburgh and Carnegie Mellon University - develop a "thermodynamic toolkit" based on the cluster-expansion method to determine phase formation mechanisms and stabilities from Density Functional formation energetics.

Objectives

To provide the Sandia MHCoE with insight to the fundamental mechanisms and processes controlling the kinetics of hydrogen absorption/desorption from candidate complex metal hydride systems designed to meet the storage system targets.

- To characterize the structural, chemical, and bonding changes occurring during the absorption/desorption cycles.
 - identify absorption/desorption mechanisms for candidate systems to guide alloy development
 - Determine sensitivity to contaminants
- To provide theoretical modeling to guide materials development.
 - Provide a toolkit for partners to use to evaluate the potential impact of

Approach

- Use state-of-the-art characterization capabilities to determine the structure, chemistry and bonding of candidate systems.
- Determine the fundamental processes controlling the absorption/desorption from alanate and light-metal solid-state storage systems.
- Use electronic structure calculations to evaluate strategies for manipulating the hydrogen – metal bond to improve absorption/desorption kinetics.
- Develop models to aid identification and development of new solid-state storage materials.

Approach – chemical characterization using a FEG –TEM

Element redistribution following high temperature and high pressure gas phase charging of a Ti-25Al-10Nb-3V-1Mo alloy

Al and to some extent Nb is being rejected from the hydride as it drives toward the formation of the binary TiH₂.

Approach – Surface chemistry determination using AES

Change in surface chemistry impacts hydrogen absorption in TiAl

Hydrogen uptake conditions require surface is predominantly TiO_{2.} Formation of this layer is kinetically not thermodynamically limited.

Approach - Surface morphology using SEM

Change in surface morphology of TiAl

823 K for 5hr. 1 Pa of oxygen then 4 x 10⁴ Pa hydrogen

1073 K for 5hr in 1 Pa oxygen

1073 K for 5hr in 1 Pa oxygen + 4 x 10⁴ Pa hydrogen for 5hr

Outer layer TiO₂ Hydrogen uptake

823 K in 4 x 10⁴ Pa hydrogen for 20 days

Outer layer TiO₂ Hydrogen uptake

Change in surface chemistry and structure impacts hydrogen uptake in TiAl. Absorption occurs only when the surface is predominantly TiO₂.

Approach – Phase transitions.

Phase transitions due to deuterium charging Ti-25.35 at% Al

Increasing hydrogen concentration

D/M = 0.18; Solid solution of deuterium in α_2 and twinned deuteride with ordered DO₁₉ structure, β_0

D/M = 0.59; β o + Large grained FCC twinned deuteride, δ l

D/M = 1.67; $\beta_0 + \delta_1$ + fine grained FCC twinned deuteride, δ_f + amorphous.

Driving force for the refinement of FCC structure and formation of amorphous phase is the difference in site energies for deuterium in the lattice and in grain boundaries.

Approach – Determination of the enthalpies of formation.

Kissinger plots for the different peaks in the DTA spectrum

Differential thermal analysis

Kissinger Plots

Determination of the enthalpies of formation.

Approach – Structural transformations in hydrides

Accommodating the volume expansion

Increasing hydrogen concentration

Matrix DO_{19} a= 0.575 nm, c = 0.463 nm; Hydride DO_{19} a= 0.610 nm, c = 0.490 nm

Volume expansion accommodated by internal twinning of hydride with variants of different thickness, variation in hydrogen concentration through thickness minimizes lattice mismatch.

Approach – Structural transformations in hydrides

Phase transition in a Titanium alloy

Transition from the DO₁₉ hydride to the FCC hydride with increasing hydrogen concentration. Note twin structure in the FCC hydride.

Comparison of hydride/matrix interface structures

Ledge structure indicates hydride growth mechanisms.

Approach – develop thermodynamic toolkit to automate study of phase stability

Alloy Thermodynamic Toolkit to predict thermodynamic stability of phases via small sets of calculated structural energies based upon reliable cluster-expansion method.

Components of Toolkit have been constructed and used independently.

Modules are being integrated in C++.

Approach- develop alloy structural energy database to aid automation stability studies

Example Application: fcc and hcp Al-Ag solid-solution energies via toolkit components

Neumann GS at Ag2Al

Use of toolkit successfully predicts new structures and precipitates – verified experimentally.

Approach – identify processes during (de)hydriding and design of new alloy systems

Identified electronic means to maximize H and stabilize ternary

Calculation find 60% increase in H uptake!

alloys	Calculated	H/M	
	hydride	observed	
	d-holes		
Pd(100)	0.62	0.60	
Pd(95)Rh(5)	0.60	0.58	
Pd(90)Rh(10)	0.73	0.70	
Pd(93)Rh(5)V(2)	0.89		
Pd(90)Rh(8)V(2)	0.98		

Designed Ternary H-Storage Alloy

PdgoRhgV2 has optimal H/M max. and needed thermodynamically stable s.s. phase.

Confirmed experimentally at Sandia, CA (1998).

Predicted maximum Hydrogen-to-metal ratio H/M (vertical lines) during dehydriding in **Pd-Rh** agrees with measured desorption max. (S. Guthrie, Sandia).

Calculated desorption H/M ratio corresponds to measured values. Theoretical modeling used to provide guide to alloy development – H storage of ternary predicted and then confirmed experimentally!

Future Work (FY05 - FY07)

- Determine safe and best practices for preparing samples of air sensitive materials for structural and chemical characterization in the electron microscope.
- Characterize initial chemistry and structure of alanates and Mg-based alloys.
- Validation and testing of toolkit.
- Establish ORACLE™ type searchable database for toolkit operation.
- Determine the differences in chemistry and structure following an absorption/desorption cycle for alanate and Mg-based structures
- Deliverable of toolkit and database to MHCoE partners 2005-6 to allow rapid additions of alloy structural energies from MHvCE partners.
- Investigate initial systems with electronic-structure methods to guide experiment in improvements or explain observations.
- Determine alloying effects on Mg- and Li-based systems to understand effects of bonding and structure, impacting potential H capacity.
- Investigate interfacial solute and surface effects, where, potential, most reactivity takes place.

Summary of Program Plans Go/NoGo decision correlated with material development

TASK	2005	2006	2007	2008	2009
Task 1: Structure and Chemistry of Complex Hydrides and Lightweight Metal Hydrides		Down-select be	es t		
Inert gas transfer system		preparation met	hod		
Develop sample preparation techniques, beam sensitivity of systems			Go/No-Go		
Effect of impurities on absorption/desorption cycles			MgH ₂ /Si		
Structural and chemical changes Mg/Li- based light-metal hydrides, alanates		—			Go/No-Go
Structural and chemical changes during absorption/desorption cycles for MHCoE selected systems					LiBH ₄ /MgH ₂
Task 2: First-Principles-Based Structure, Energetic Stability, and Thermodynamics of Candidate Metal-Hydride Systems					
Cluster-expansion toolkit					
Construct database structure					
Development of cluster-expansion-based kinetic barrier toolkit for alloys		_			
Systematic study of structure, bonding,					
and stability of metal-hydrides with/without					
hydrogen Use both electronic and thermodynamics					
methods to interpret experiments and aid					
alloy development					