#### Flexible Co-Production of Renewable Hydrogen and Electricity

P. Patel, L. Lipp, F. Jahnke FuelCell Energy, Inc.

FC 300

PuerCell Line

King County

etticient

DFC 300

D. Tyndall Air Products and Chemicals, Inc.

F. Holcomb U.S. Army Corps of Engineers Engineer Research and Development Center (ERDC-CERL)

**Presented at** 

NHA Workshop on Hydrogen in Military Applications Columbia, South Carolina

October 2-4, 2007



FuelCell Energy

(NasdaqNM:FCEL)

#### **Overview**

- Hydrogen Infrastructure: Challenges and Opportunities
- DoD Hydrogen and Fuel Cell Initiatives
- On-site Renewable Hydrogen Co-production
- Co-production Technology Update
- Summary



#### Hydrogen Infrastructure: Challenges and Opportunities

- Challenges:
  - Transition Strategy, Stranded Assets
- Opportunities:
  - Flexible Value Proposition, Multi-purpose Solution
  - Dual Use (Industrial Use → Transportation Use)
- Overall, cost of the delivered hydrogen must be cost-competitive, and meet all the regulatory requirements



### Leveraging Civil/Military Power Requirements



Premier developer of stationary fuel cell technology with more than \$530 million invested in R&D

More than 30 years of experience

Delivering Ultra-Clean Direct FuelCell power plants to institutional, commercial and industrial customers

Headquarters in Danbury, CT (USA), with 65,000 square foot manufacturing facility in



Company

Torrington, CT





#### DFC-H2

Dowor Dlant

#### Commercial/Industrial Building





DFC-H<sub>2</sub> POWER PLANT



Hydrogen: 20%

kWs to electric load: 50%

Heat to buildings thermal load: 15%



H<sub>2</sub> – REFUELING STATION



#### <u>Fuel</u>

- Natural Gas
- Digester Gas
- Propane
- EPA Diesel
- > JP-8
- Ethanol
- Wastes, MSW, Grasses and Grains

#### Technology Status

- Commercial
- Commercial
- Commercial Demo
- Lab Demo
- Lab Demo
- Lab Demo
- Gasification Demos not integrated with DFC



# Examples of Digester Gas Fed DFC<sup>®</sup> Plants









#### Sierra Nevada Brewery, California



## **DFC Units Operating on Digester Gas**

| <u>Unit name</u> | In service | <u>Capacity</u> |
|------------------|------------|-----------------|
| King County      | 6/2004     | 1 MW            |
| Kirin            | 9/2003     | 250 kW          |
| Fukuoka          | 1/2004     | 250 kW          |
| Palmdale         | 8/2005     | 250 kW          |
| Santa Barbara    | 1/2005     | 500 kW          |
| Tancheon         | 4/2006     | 250 kW          |
| Super Eco Town   | 6/2006     | 250 kW          |
| Sierra Nevada    | 5/2005     | 500 kW          |
| KEEP             | 1/2006     | 250 kW          |
| Tulare           | Planned    | 750 kW          |
| San Ramon        | Planned    | 600 kW          |



# Reduction in $NO_x$ and $SO_x$ Emissions

|                                       | NO <sub>X</sub><br>(Ib/MWh) | SO <sub>X</sub><br>(Ib/MWh) | CO <sub>2</sub><br>(Ib/MWh) |
|---------------------------------------|-----------------------------|-----------------------------|-----------------------------|
| Average US Fossil Fuel<br>Plant       | 4.200                       | 9.21                        | 2,017                       |
| Microturbine (60 kW)                  | 0.490                       | 0                           | 1,862                       |
| Small Gas Turbine (250 kW)            | 0.467                       | 0                           | 1,244                       |
| DFC Fuel Cell<br>47% efficiency       | 0.016                       | 0                           | 967                         |
| DFC Fuel Cell –<br>CHP 80% efficiency | 0.016                       | 0                           | 545                         |

NO<sub>x</sub> and SO<sub>x</sub> are negligible compared to conventional technologies



## Significant Reduction in CO<sub>2</sub> Emissions

CO2 Emissions Reduced ~30% by HES





#### **Performance for DFC-300 Frame**

|                                         | Units  | NG    | Biogas |
|-----------------------------------------|--------|-------|--------|
| Overall Efficiency – "Tri-Gen"          | LHV    |       |        |
| (Net Power + Hydrogen + Heat) / (Fuel)  | 1107   | 0.0%  | 000/   |
| Overall Efficiency – H2 + Power         | LHV    | 66%   | 63%    |
| (Net Power + Hydrogen Product) / (Fuel) |        |       |        |
| Hydrogen Product                        | Kg/day | ~ 135 | ~120   |
| Net Power                               | kW     | ~ 250 | ~ 240  |
| Heat Export                             | kW     | ~ 75  | ~ 50   |



## **Electrochemical Hydrogen Separation (EHS)**

- Separates H<sub>2</sub> rather than CO<sub>2</sub>
- EHS can be based on PEM, PAFC or P-SOFC
- FCE's Electrochemical Hydrogen Separator offers:
  - No moving parts
  - Lower power requirement and potentially lower cost
  - Simpler, truly continuous process (simple controls, flexible op.)
  - Versatile (can separate H<sub>2</sub> from a wide range of H<sub>2</sub>containing streams)



## **EHS System Demonstration at University of CT**

- The Demo Unit separates 6 lb/day H<sub>2</sub> can refuel approx. one car per day
- >7000 hours of operation to date
- Reliable operation: No EHS-related shutdowns



Celebration of Successful Completion of EHS Demo Project September 2007



#### **EHS Scale-up Stack Hardware Qualification**



Successful Scale-up to 1000 cm<sup>2</sup> Active Area (Short Stack)



## EHS Technology Scale-up: Partners





#### **Co-Production Of Hydrogen And Electricity Using DFC Power Plants**

| DFC Power<br>Plant | Electrical<br>Output [kW] | Hydrogen<br>Produced<br>[lbs/Day] | Fuel Cell Fleet<br>Vehicles Serviced<br>[approx.] * |
|--------------------|---------------------------|-----------------------------------|-----------------------------------------------------|
| DFC-300            | 250 kW                    | 300                               | ~300                                                |
| DFC-1500           | 1000 kW                   | 1,200                             | ~1,200                                              |

\* DOE-Air Products' Study









#### Summary

- Co-production of hydrogen and electricity offers a better value proposition
- It is an enabling technology for hydrogen infrastructure
- High temperature fuel cells such as MCFC and SOFC, provide "virtually free" source of hydrogen (you pay for separation of dilute hydrogen)
- Conventional separation processes meet technical requirements. A demonstration using Air Products' PRISM PSA system is planned.
- Initial test results using electrochemical hydrogen separation are encouraging



### **Flexible Co-Production: Load Following**



## Defense Depot – Susquehanna, PA

|  | <image/> | <ul> <li>Objectives:</li> <li>Explore fuel cell infrastructure and functionality with forklifts</li> <li>Develop a business case for fuel cells</li> <li>Collect and analyze operational data</li> </ul> Approach: <ul> <li>Retrofit <u>40 forklifts with fuel cells</u></li> <li>Conduct <u>Fly-Off between two fuel cell producers</u></li> <li>Set up <u>storage &amp; dispensing</u> systems for delivered H<sub>2</sub></li> </ul> |
|--|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

#### **DOD Impacts:**

- Develop knowledge of fuel cell powered fork lift capabilities, costs, limitations and benefits
- Improve MRLs and costs

#### **Customers:**

- Depot located at New Cumberland, PA

#### Performers: TBD

#### **Milestones:**

- Contract award May 2007
- First Articles Summer 2007



## Hydrogen Forklifts at Military Bases

- Delivered in May of 06 at GFARNGB
- Testing in Cold Weather Conditions
- Powered by General Hydrogen Fuel Cell Pack



General Hydrogen's Fuel Cell Pack



≥ 3 Sites≥ 70 Fork Lifts

~5 lb/refill



FuelCell Energy

#### **Conceptual Design of Commercial DFC-H<sub>2</sub> System: SubMW Unit**



**Demonstration Planned with Air Products in 2008/09 (DOE-EERE)** 

